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On the Wave Propagation and Mode Convetsion in
a Helically Corrugated Multimode
Circular Waveguide

C. C. H. TANG

Abstract—For specific forms of excitations, the normal modes
and mode coefficients of a lossless helically corrugated circular multi-
mode waveguide are determined from the appropriate boundary
conditions. Because of the multiplicity of the roots of the character-
istic dispersion equation obtained, care must be exercised in the
evaluation of the equation and in the interpretation of the -8
diagram.

For the TE;; mode excitation, it is shown that increasing either the
depth or the width of the corrugation enhances the conversion into
the TMy; mode, whereas increasing the pitch reduces the TM,; mode
conversion. Mode conversion always increases with increasing fre-
quency. The theoretical results are in agreement with the results of
measurement.

INTRODUCTION

DESCRIPTIVE model of a helically corrugated
A circular waveguide shown in Fig. 1 can be ob-

tained by cutting a helical shallow slot along the
inside wall of a standard rigid circular waveguide. The
commercially available flexible circular waveguides
have a similar inside surface of helical corrugation but
can be used for negotiating a gentle bend. The purpose
of this paper is 1) to analyze the characteristics of wave
propagation in such a straight, helically corrugated, and
multimode circular waveguide of infinite length and 2)
to calculate the mode conversion level due to the pres-
ence of a section of helical corrugation in a smooth cir-
cular waveguide.

Related problems in magnetrons and linear acceler-
ators for electrons [1]-[4], traveling-wave tubes [5],
[6], and surface-wave structures [7]-[10] have been
discussed in the literature with specific requirements
for each problem. These three categories of problems
mentioned above have been treated with one specific
feature in common; i.e., they are all considered as slow-
wave structures only. The basic feature of the present
problem, which differs from that of the above-men-
tioned three classes of problems, is that both the fast-
wave and slow-wave aspect of the wave propagation in
a helically corrugated circular waveguide will be studied.
The one characteristic that is common to all such struc-
tures is that the corrugated surfaces are capable of sup-
porting a tangential component of electric field in the
direction of energy propagation.

Usual approximate analyses for circularly corrugated

Manuscript received December 27, 1965; revised February 24,
1966.

The author is with Bell Telephone Laboratories, Inc., Murray
Hill, N.J.

Fig. 1. (a) Cross-sectional view of a helically corrugated circular
waveguide. (b) The developed view of the helical corrugation.

linear accelerators assume the propagation of the lowest
transverse magnetic slow-wave mode only, i.e., the cir-
cularly symmetric TM,y; mode. Both the traveling-wave
tubes and surface-wave guides are open-boundary
structures, i.e., structures having one or more trans-
verse field dimensions extending to infinity. The heli-
cally corrugated waveguide is a closed-boundary struc-
ture and because of its skew boundary conditions, it is
necessary to analyze the problem by using both trans-
verse magnetic modes and transverse electric modes in
complete sets. For a specific form of excitation, the nor-
mal modes and mode coefficients of a lossless helically
corrugated circular waveguide are determined from the
appropriate boundary conditions. These boundary con-
ditions lead to 1) a characteristic dispersion equation
yielding the propagation constants of the normal modes
and 2) equations yielding the mode coefficients that can
be interpreted as the amount of conversion into vari-
ous modes.

To investigate the transmission and mode conversion
properties of a wave propagating through a transition
from a smooth circular guide to a helically corrugated
circular guide in a rigorous manner, we should expand
the normal modes of the helically corrugated guide in
terms of those of the smooth guide and vice versa. In
such an expansion, an infinite set of linear equations in
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an infinite number of unknowns will be involved. Ap-
proximations are used to obtain the mode conversion
in such cases.

Because of the nature of the characteristic dispersion
equation obtained, care must be exercised in the evalua-
tion of the equation and in the interpretation of the
w-B8 diagram. By varying the parameters such as the
pitch p, slot depth 6, and slot width w, we conclude that
the theoretical results and our physical intuition are
compatible. The theoretical calculations and the experi-
mental results obtained on available helically corrugated
circular waveguides are also in agreement.
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Because of the periodic nature of the helical corruga-
tion, application of Floquet's theorem shows that the
z-dependence of the fields must be of the form

g IBme = g—abozg—imQrip))z, (3)
ie.,
27
:8m = ;80 + m _Z; ) (4.)

where m is any positive or negative integer.
The complete fields inside the radius ¢, with the time
dependence ¢! suppressed, can be expressed as
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FORMULATION with
The helically corrugated waveguide has a small pitch o 1 R
p, radius a, small pitch angle §=tan~! p/2wa, shallow fn® = k= Bn’, (6)
slot depth 6 =b—a, and narrow slot width w as shown in
Fig. 1(a), with its guide axis as the axis of the cylindrical and
coordinates (p, ¢, z). The developed helical corrugation
as viewed from inside when cut by a plane of constant ¢ b= Y 2_” , )
and unrolled is shown in Fig. 1(b). An additional set of c Ao

unit vectors ¢ and ¢,, parallel and perpendicular, re-
spectively, to the pitch angle 8 is introduced in Fig. 1(b)
and the vector relation &, =&,X ¢, holds. Let the super-
scripts 7 and s refer to the inside region p<e and slot
region a<p<b, respectively. We have the following
boundary conditions:

at p=a,
Ezi tan 8 + Ed,i = E”S = 0,
Ejcosf — Egisind = E| | 1)
Hzi Sin9+H¢i cos @ =H”S, J
atp=20,

E”s = J_S = 0. (2)

where w and A\, are, respectively, the angular frequency
and free-space wavelength. Equations (5) can be simpli-
fied [6] by noting the fact that if the helical corrugation
is moved a distance less than p and then rotated in ¢
through a certain angle, it again coincides with itself.
This constraint can be ensured only if we make n=—m
and put A.,,* = But=0 for n —m. Thus (5) is reduced
to a single summation index in m.

In an attempt to make the present analysis applicable
to frequencies far away from cutoffs of the multimode
waveguide, an exact field distribution in terms of both
propagating and evanescent modes across the opening
of the helical slot is necessary. Such a field distribution
is derived in the Appendix.
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To express the field distribution across the slot open-
ing in terms of space harmonic components, we write

s —s —1(Bmz—me)
Bl = 3 E(a)e ' (8)
Since
cos BE, (a) = E.*(e),
cos 0E.,'(a) = Ei,*(a),
we have
_ 1 (w/2)+ (pp/2m)
Ein*(a) = ~—f [Eﬁ(a)e“ﬁm’f"‘d’)]ds
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Solutions of (11)-(13) furnish the sought-after char-
acteristic dispersion equation:
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where E.1°(a) is obtained by putting p=a and z2=0 in
(24) in the Appendix, i.e., the field at the center of the
opening of the slot. Accordingly, (9) becomes
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The matching of the boundary conditions at p=a at
the center of the slot in accordance with (1) yields the
following equations:
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and the coefficients:
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The characteristic or determinantal equation (14)
yields, for a given excitation field configuration, the
propagation constant 8, for all possible normal modes
in the helically corrugated waveguide, whereas (15) and
(16) provide us with the relative contents of the normal
modes for the particular excitation field configuration.

! The characteristic equation (14) turns out to be basically the
same as equation (33) obtained by Foulds and Mansell in their
paper “Propagation of an electromagnetic wave through a helical
waveguide,” Proc. IEE (London), vol. 111, pp. 17891798, November
1964. When equation (14) was in the programming stage, the author
noticed the publication of the paper by Foulds and Mansell using
nonorthogonal helical coordinate system to obtain their equation
(33) and emphasizing mainly on the propagation in the “deep” slot
and the rotation of the plane of polarization of waves passing through
the helical guide. The present paper uses a cylindrical coordinate sys-
tem to obtain (14) above and has its emphasis on wave propagation
and mode conversion characteristics in the helical guide and the
proper interpretation of the w-8 diagram for the problem.
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Inspection of (14) shows that it reduces to the normal
mode solutions of a solid smooth circular waveguide as
it should under the following conditions:

1) when b =g, then J,({ne) =0 and J,/({na) =0
2) whenw = p, then J,(¢xd) =0 and J,./({wd) =0
3) whenw =0, thenJ,(ne) =0 and J,/(fna) = 0.

The actual computation of the propagation constant
B~ will not be possible until the excitation field config-
uration is specified. To simplify the problem we assume
in the next section that the only slot excitation field is
in a form similar to the dominant mode TEy in a solid
smooth circular waveguide. Equation (14) then can be
simplified by letting ¢=1 only.

CALCULATIONS, DISCUSSIONS, AND MEASUREMENTS

For a given frequency, the phase velocities and ampli-
tudes of the fundamental and space harmonics are not
independent of each other, and depend on the form of
potential field, which is controlled by the particular
structure of the periodic guide and the particular ex-
citation. The evaluation of the right side of (14) with
g=1 only should center around the branch m =1 in this
case, in order to insure the continuity of fields between
the two regions, since we have chosen the TE;; mode
slot excitation with circumferential variation corres-
ponding to ¢=1. In other words, the fundamental is in
the branch m =1 of the w-8 diagram as shown in Fig. 2,
and the branch m =g is always the fundamental branch.
In fact, what is mentioned above is implicit in the mean-
ing of the mode coefficients Amum and Bum. Physically,
the implication is that the fundamental is taken to be
that space harmonic with the highest phase velocity or
the largest amplitude. Evaluation of the RHS series of
(14) with ¢=1 only also confirms that for frequencies
not too high the term with m=1 is always the fast-
wave term with the highest phase velocity and the
largest amplitude, whereas terms with m=1 are all
slow-wave space harmonic terms with relatively very
small amplitude compared with that of m=1 term.
The sum of all the slow-wave terms converges quite
rapidly to zero. For slow waves, the argument of a
Bessel function becomes imaginary and the relations
are: Jn(jknp) =" In(bnp) and T’ (jEnp)=—j-j"I.'
(énp). Inspection of Fig. 2 reveals that for the particular
combination of g, §, p, and w studied here, the w-8 curve
of the helically corrugated circular guide virtually
coincides with that of the corresponding mode of the
solid circular guide; i.e., the propagation is virtually un-
disturbed by the presence of the shallow and narrow
helical corrugation (the effect of deep corrugation will
be discussed later) of appropriate pitch on the wall of
a solid circular waveguide. AB=8—8, in Fig. 2 shows
that the difference between the phase constant of a
smooth guide 8, and the phase constant of a corrugated

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

JUNE

guide B is very small and positive, indicating that the
helically corrugated guide is less capacitive than the
smooth guide. Measurements on such helically corru-
gated guides also confirm the above fact. It is logical to
conjecture that the presence of the slow waves in the
guide must have created such a field across the openings
of the slots that the helically corrugated guide appears
as a solid smooth guide to the fast wave-—i.e., the field
across the openings of the slots apparently appears van-
ishing.

To prove the validity of the statements in the pre-
ceding paragraph, we let a) ¢=0 only (for TMy;), and
b) ¢=2 only (for TEy) in (14) and we see from Figs. 3
and 4 that a) m=0, and b) m =2 are, respectively, the
fundamental branch of the w-8 curves. These curves
are again virtually identical with those of the corres-
ponding modes of smooth circular waveguide since
AB's are very small.

Apparently (14) with ¢=1 only can also be used for
such a form of slot excitation as the TE;; or TMy;
(¢=1, 2,3, -+ - ) mode in a solid smooth circular wave-
guide for cases where multimode propagation are pos-
sible and accordingly solutions for B in these cases
should be multivalued. This fact is verified by evalua-
tion of 8 from (4), (6), and (14) [¢g=1 only] for multi-
mode cases (i.e., at higher frequencies) as shown in the
w-0 diagrams of Fig. 5(a) and (b).

The periodic nature of the w-8 diagram is obvious
from Figs. 2-4. The phase velocities of the wvarious
harmonics are different in magnitudes and signs. At
cutoff frequencies, for every space harmonic with posi-
tive phase velocity, there is one with an equal and
opposite phase velocity. Equations (15) and (16) show
that the amplitudes of these pairs are also equal and
therefore, at cutoff frequency, the guide can support
only standing waves. The group velocities of all the
space harmonics are seen to be equal for any single fre-
quency and to have the same direction as that of the
energy. Those space harmonics whose phase velocities
are always opposite in direction to the respective group
velocities are termed reverse or backward waves. In
particular, it is possible to have periodic structures in
which the fundamental itself is a backward wave.
Since the helically corrugated waveguide is a closed-
boundary structure, its w-8 diagram does not have any
“forbidden region” as evidenced in Figs. 2—-4. Outside
the triangles v,= + C, the propagation is of slow-wave
type, and the groove appears as inductive loading.
Within the triangles the propagation is of fast-wave
type and the groove appears as capacitive loading. The
nature of slow-wave propagation becomes more and
more evident as the depth or width of the corrugation
increases as shown in Figs. 7 and 8 to be discussed
later.

In Figs. 2-4, as the frequency increases, the value of
(8p) will go through a multiple of 7. The computation
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Fig. 2. Propagation characteristics of “TE;;” mode in a

helically corrugated circular waveguide.

PARAMETERS:
a=1.406"
p =0254"
B =PHASE CONSTANT OF HELICALLY CORRUGATED GUIDE 8 =0.050"
/3$=PHASE CONSTANT OF SMOOTH GUIDE w =0.046"
f =FREQUENCY IN gc
C =VELOCITY OF LIGHT
AB=B —Bg
0O 004 008 o012
F=m=l T i T m==1-]
£, m=0
2 O
X v f <
24 2
N N
\ 20 \
AN ' 7 A8
AN AN
\ 12
N 8
I _~
P NE ?
L 1 i 1 1 1 1 1 1 1
-20 -6 -2 -8 -4 o 4 8 12 16 20
B
Fig. 3. Propagation characteristics of “TMg;” mode in a

helically corrugated circular waveguide.
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Fig. 4. Propagation characteristics of “TE2” mode in a
helically corrugated circular waveguide.
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Fig. 5. (a) Propagation characteristics of “TE;” modes in a

helically corrugated circular guide. (b) Propagation character-
istics of “TM1;” modes in a helically corrugated circular guide.



280

shows that when the frequencies at which (8p) ap-
proaches a multiple of = are reached, the fast-wave space
harmonics begin to appear in addition to the fast-wave
fundamental. At and around these frequencies the
computation also shows that the amplitude of the
fundamental drops and that of the space harmonic in-
creases, typifying the description of a space harmonic
“resonance” in the pitch length p. The typical sharp
discontinutity in the propagation constant in the “con-
ventional sense of resonance” does not occur here, as
evidenced by the effect of varying the pitch p in Fig. 6
to be discussed later.

Before investigating mode conversions and observing
the effect of varying parameters, w, p, and 6=b—a, we
shall briefly mention the way the propagation con-
stants (8, of the normal modes of the helically corru-
gated circular waveguide are computed from (4), (6),
and (14). The computation was carried out on IBM
7094 computer by assuming a reasonable 8, =8, on a
cut-and-try basis in order to establish the identity of
(14). Obviously, the propagation constant of the cor-
responding mode in solid smooth guide can serve as the
best clue in choosing the initial trial value of 8,=3,.
Subsequent trials of 8,, will be such that the values of
the right-hand side of (14) converge to the constant
value of the left-hand side for a particular frequency and
particular mode of excitation. An “educated” guess of
both the upper and lower limit of the sought-after 3., is
often complicated by the multiplicity of the roots of
(14). Accordingly, programming the equation to yield
the sought-after propagation constant is, itself, a tre-
mendous task.

The effect of varying the pitch of the helically cor-
rugated guide with a narrow and shallow corrugation is
shown in Fig. 6 and will be discussed first. We have
mentioned earlier that for a fixed pitch p, the value of
(8p) will go through a multiple of = as the frequency
increases, as seen in Figs. 2—4. Figure 6 shows that as
the pitch is increased, the fast-wave space harmonics
will appear at lower {requencies as they should. Every
time a fast-wave space harmonic is added, the 8p is
increased in its value by a 7. The Af shown in Fig. 6 is
for the fundamental “TEy4” (¢ " denotes the normal
modes of the helically corrugated circular waveguide)
fast wave only;i.e., m =1, but the number label on each
broken curve shows the fast-wave harmonics present.
For example, the label with numbers 1, 0, and —1 indi-
cates, respectively, that the fundamental, second har-
monic, and third harmonic fast waves are present. At
and around the frequencies for which (8p) goes through
a multiple of 7, the amplitude of the fundamental drops
and that of the space harmonic rises, typifying the
description of a space harmonic “resonance” in the pitch
length p, It is important to note that at low frequencies,
increasing the pitch p has the effect of reducing the AS
(therefore reducing mode conversion also) without in-
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troducing the “resonance” effect of the second harmonic
fast wave. Accordingly, for a particular frequency range
of interest, there is always an “optimum?” choice of the
longest pitch length p in order to reduce the mode con-
version [see Fig. 9(c) ] level without “side effect.”

The effect on the propagation constant by varying
the slot width w of the helically corrugated guide with
shallow slot depth and appropriate pitch is shown in
Fig. 7. Increasing the slot width w increases the A8 and
therefore enhances the mode conversion [see Fig. 9(a)].
As the width is widened to a certain limit (e.g.,
w=0.10 inch), the fundamental “TEy” fast-wave will
make the transition, at a certain frequency (at about
15.5 Gc/s for w=0.10 inch)}, from the fast wave to the
“TMuy” slow-wave fundamental and harmonics (in this
case numbering from —3 to §, i.e., forward and back-
ward second through fifth space harmonics). The {act
that the wave makes the transition from a fast one to
a slow one indicates that the helically corrugated wall
appears to change, for a certain fixed frequency, from
capacitive to inductive for increasing slot width. When
the width is equal to the pitch, all the slow waves
vanish and the fast-wave fundamental alone propa-
gates in the smooth guide of radius 5. This is why in
Fig. 7 the slow-wave portion of the curve for 6=0.20
inch is located above that for §=0.15 inch or 0.10 inch.

Increasing the slot depth § obviously will make the
helically corrugated wall look, for a fixed frequency,
less and less capacitive and eventually inductive for
0 <3No. Figure 8 shows that for § =0.10 inch, the wall be-
comes inductive at about 15.5 Gc¢/s and the funda-
mental “TEy;” fast wave makes the transition into the
“TMy” slow-wave fundamental and harmonics (in this
case numbering from —2 to 4, i.e., forward and back-
ward second through fourth harmonics). Increasing the
slot depth also increases the AB and therefore enhances
the mode conversion [see Fig. 9(b)]. If the depth
of the corrugation goes through a multiple of quarter
wavelength, the helically corrugated guide would be-
have like filters having stop bands and pass bands. For
slot depth of 0.30 inch, for example, the slow-wave stop
band starts around 9.5 G¢/s as seen in Fig. 8. In general,
the propagation characteristics for guides with “deep”
corrugation are drastically different from those with
very shallow corrugation. For guides with “deep” cor-
rugation, the waves will also propagate in the slot in
the helical direction and the polarization plane of the
waves propagating in the center space will be rotated,
as discussed by Foulds and Mansell [13]. All these
effects are the results of apparent significant increase of
power flow into the helical corrugation.

We shall now turn our attention to the evaluation of
the mode coefficients of (15) and (16). Assuming the
dimensions shown in Fig. 2 and a slot excitation field
with circumferential variation of the TEy mode in
smooth guide (i.e., ¢=1), we can obtain numerical
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values of the mode content from (15) and (16). We inter-
pret the coefficient Biyi as the amount of “TEy” (quota-
tion marks denote the normal modes of the helically
corrugated guide) mode fast-wave (or slow-wave) funda-
mental present in the helically corrugated guide and the
coefficient A1;* as the amount of “TMy;,” mode fast-wave
(or slow-wave) fundamental. All other coefficients
Ammt and Bpn' for |m|>1 represent the amounts of
fast-wave (or slow-wave) space harmonics. For the
TE;; or TMi; mode excitation, m=1 means funda-
mental, m =0, —1, or —2 means, respectively, forward
second, third, or fourth space harmonics, and m=2, 3,
or 4 means, respectively, backward second, third, or
fourth space harmonics. For TEy; or TM,; mode excita-
tion, m =2 means fundamental and m=1, 0, or —1
means, respectively, forward second, third, or fourth
space harmonics. For purposes of comparison, we are
interested in only the relative magnitudes of the mode
coefficients and, accordingly, all the mode coefficients
will be normalized to the largest mode coefficient. The
normalized mode coefficient thus represents the relative
content of the mode with respect to the strongest mode.
For the TEy mode excitation and the parameters shown
in Fig. 2, Table I shows that the “TM;;” mode is the
only important one in addition to the dominant “TE”
mode. All other coefficients 4,,,* and B,,,* for m=1 are
all at least a few orders of magnitudes smaller than 4%

For the TMy; mode excitation and parameters shown
in Fig. 2, Table II shows that the “TE;;” mode is the
only important one in addition to the “TMy” mode.

Comparison of Tables I and II shows that “TMy” is
the “preferred” mode of the helically corrugated
circular waveguide, because of its axial electric field
component.

Both Tables I and II show that the mode “conversion”
increases with increasing frequency. Figure 9 shows, for
the TEy;; mode excitation at 6, 11, and 14 Gc/s, the
mode “conversion” by varying the parameters §, $, and
w, one at a time. It is seen that increasing either the
width or the depth of the slot enhances the “TMy”
mode “conversion,” whereas increasing the pitch re-
reduces the “TMy;;” mode “conversion” as discussed
earlier.

We are now in a position to study the transmission
and mode conversion properties of waves at a transition
from a smooth guide to a helically corrugated guide of
semi-infinite length. To be rigorous, we have to express
a typical normal mode of the smooth guide in terms of
the normal modes of the helically corrugated guide. To
do that exactly, we have to solve an infinite set of linear
equations in an infinite number of unknowns. The prob-
lem can be simplified considerably if we may neglect the
reflected waves at the transition for cases where the
slot depth § =b—aq is small. In such cases, mode conver-
sion should be small and the amount of mode conversion
can be represented directly by (15) and (16) or Tables I
and I and Fig. 9 as an approximation.
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When a smooth waveguide, a length of helically cor-
rugated waveguide, and a smooth waveguide are con-
nected in tandem, the amount of converted mode at the
output smooth guide is approximately the vector sum
of the mode conversion voltages at the input transition
(TEy to “TMy”) and at the output transition (“TE;”
to TMy). For example, we have from Tables I and II
at 6 Ge/s the upper and lower bounds, respectively, at
—28 dB and —31 dB level, depending upon the length
of the corrugated circular waveguide section. We have
obtained experimentally these two bounds by Klinget’s
cavity resonance method [14]. The test was performed
by using a helically corrugated circular waveguide of
four feet in length. The “educated” curve sketched from
the measurement points shows that the upper bound is
close to —28 dB level and the lower bound is about at
— 35 dB level (see Fig. 10). The agreement between the
theoretical results and the experimental results is within
the measurement accuracy of the method used.

TABLE I
MobE LEVELS FOR TE1u EXCITATION

f 6 Ge/s 11 Ge/s 14 Ge/s
“TEu” Power: (Bn’”/Bn")Z 0dB 0dB 0dB
“TMu” Power: (Au*/Bu*)2e/u| —29dB —17 dB —12 dB
TABLE 11
MobpE LEVELS FOR TMy; EXCITATION
f 6 Ge/s 11 Ge/s 14 Ge/s
“TMu” Power: (An*/An?)? 0dB 0dB 0dB
“TEu” Power: (Bu'/Au")* u/e| —45dB -30 dB —25dB
PARAMETERS: 0 =1,406; 8=0.050), p=0.254,w=0046"
LENGTH OF THE HELICALLY CORRUGATED GUIDE = 4 FT
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Fig. 10. “TMi,” mode conversion due to a section

of helically corrugated circular waveguide.

CoNCLUSION

For specific forms of excitations, the normal modes
and mode coefficients of a lossless helically corrugated
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circular waveguide are determined from the appropriate
boundary conditions. Because of the multiplicity of the
root of the characteristic dispersion equation obtained,
care must be exercised in the evaluation of the tran-
scendental equation and to the interpretation of the
w-B diagram.

By varying the parameters such as the pitch p, slot
depth 9, and slot width w, we find that our physical
intuition and the theoretical results are compatible.
Measurements on a section of helically corrugated cir-
cular waveguide also show that the experimental data
and the theoretical results are in agreement. For the
TEy; mode excitation, it is shown that increasing either
the width or the depth of the corrugation enhances the
TMy mode conversion, whereas increasing the pitch
reduces the TMy; mode conversion. Mode conversion
always increases with increasing frequency.

APPENDIX
F1ELD DISTRIBUTION AT A HELICAL SLor OPENING

For field excitations with arbitrary circumferential
variations at the opening of a slot, the electric field in-
side the helical slot of width w <\, in general has the
following form of E-type modes (similar to those in
radial transmission lines) in a localwise sense:
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at p=a shown in (18). To find the evanescent modes, we
expand (18) into a Fourier series:

0
&
By pay = Z @y COS k.3,

(19)
n=0
where
2r
ke=n—; (20)
w
7r °
a =G e for the propagating modes. (21)
@ = GnJo(nr), for the evanescent modes.  (22)

Here, we assume for simplicity that the propagation of
E,2is in the g-direction for small pitch angle 8. Equating
(17) to (21) we get, at p=a and z=¢/27,

2 ]
G = ehowsi2m) — 3" C s[H, (kb)Y H Y (ka)

T ¢=0
— H, (k) H,®(ka)]. (23)

The complete electric field expansion in the slot there-
fore is

o0 el
Eis = 3 Fi,® = e-foles/2m) 3

n=0 q=0

Z , )
Eis = 2 ColH, @ (kb)H, D (kp) — H, W (kb)H ® (kp)|eiBazuo)
q=0
¢ w pe W ,
fori——2~<z ;-}-—; (17)
y s ™
¢ w
=0 for——+—<z<p+g———
s 2w 2
Since Z.* must be constant in magnitude and phase {C H O BBV D (o) — IO (k) E . (1
inside the slot of width w cos §(<%\,), we use the phase X A Cor[H o (R (hp) 2 (RO)H (ko)
at the center of the slot, i.e., letting z=¢/27 in (17). i K ((ub) T o(Kup) — T o(Rub)K o(fenp)
The field across the opening of the slot is apparently X [1 + 2
constant according to (17), by putting p=a. On the n=1 Ko(ub) L (kua) — I, (kub) K o(ku)
other hand, because of the fringing at th.e corners of t.he X Jo(nr) cos <1’L27r i>:|} ,
slot, the actual field E1° across the opening becomes in- w
finitely large at the corners in a quasi-static manner as pé 6w \
[11] for— — — <z<—+— \
G 27 2 27 \r (24)
El (pma) = ; (18) 6 w| o
L (p=a) 22\ 27172 forP——l—~<z<jz+P—-—~|
L T 2r 2]
w
. =0
i.e., it approaches infinity according to D=2, where D
is the distance from the corner, in a fashion similar to Wwhere
infinitely sharp edges in diffraction problems [12]. B pt_ pt— L?j 2 _ 5 0 (25)
Obviously, the field near the opening of the slot cannot o AR w ’ .
be represented completely by (17) by merely letting and
p=a, since there are many evanescent higher order .
E-tyvpe modes with z-variations present at the opening K (up) = — 74 H ;O (Bup). (26)

of the slot in order to satisfy the boundary conditions
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The magnetic field in the slot is

IELS* n i _ (i)z GEL,L“:}
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kn dp

y [1 D ( ® )2 Kb aop) = oD Klor) | (m iﬂ
n=1 w

- k\* K (kab) 1 (Rnp) — 1,(kab) K (Rup) z
X [2 E — < > T 0 Rohnd) Jo(nm) cos (n27r ;)i'} .

27)

i d jwe IEL,® 1
Hp =2 Hit =2 —~— =,—[
n=0 o ka® dp Joul dp et
= el 37 Cqsjk[Hq”’(kb)Hq(”'(kp) — H W (kb)H ' (kp)]
JOH g=0
ko) Ko(knb)I,(kna) — I,(Eub)K o(Enc)
+ [H @ (kb)Hy D (kp) — H, O (kb) H, (kp)]
R kn
kn K (kb)) (kna) —
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