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On the Wave Propagation and Mode Conversion in

a Helically Corrugated Multimode

Circular Waveguide

C. C. H. TANG

Absfrac&—For specific forms of excitations, the normal modes

and mode coefficients of a lossless helically corrugated circular multi-
mode waveguide are determined from the appropriate boundary

conditions. Because of the multiplicity of th(e roots of the character-
istic dispersion equation obtained, care must be exercised in the
evaluation of the equation and in the interpretation of the W-B
diagram.

For the TE,I mode excitation, it is shown that increasing either the
depth or the width of the corrugation enhances the conversion into

the TMII mode, whereas increasing the pitch! reduces the TMll mode

conversion. Mode conversion always increases with increasing fre-

quency. The theoretical results are in agreement with the results of

measurement.

INTROD~JCTION

A

DESCRIPTIVE model of a lhelically corrugated

circular waveguide shown in Fig. 1 can be ob-

tained by cutting a helical shallow slot along the

inside ~vall of a standard rigid circular waveguide. The

commercially available flexible circular waveguides

have a similar inside surface of helical corrugation but

can be used for negotiating a gentle bend. The purpose

of this paper is 1) to analyze the characteristics of wave

propagation in such a straight, helically corrugated, and

multimode circular waveguide of infinite length and 2)

to calculate the mode conversion level due to the pres-

ence of a section of helical corrugation in a smooth cir-

cular waveguide.

Related problems in magnetrons and linear acceler-

ators for electrons [1 ]– [4 ], traveling-wave tubes [S],

[6], and surface-wave structures [7]- [10] have been

discussed in the literature with specific requirements

for each problem. These three categories of problems

mentioned above have been treated with one specific

feature in common; i.e., they are all considered as slow-

wave structures only. The basic feature of the present

problem, which differs from that of the above-men-

tioned three classes of problems, is that both the fast-

wave and slow-wave aspect of the wave propagation in

a helically corrugated circular waveguide will be studied.

The one characteristic that is common to all such struc-

tures is that the corrugated surfaces are capable of sup-

porting a tangential component of electric field in the

direction of energy propagation.

l_Tsual approximate analyses for circularly corrugated
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Fig. 1. (a) Cross-sectional view of a helically corrugated circular
waveguide. (b) The developed view of the helical corruga t ion.

linear accelerators assume the propagation of the 1owest

transverse magnetic slow-wave mode only, i.e., the cir-

cularly symmetric TM 01 mode. Both the traveling-wave

tubes and surface-wave guides are open-boundary

structures, i.e., structures having one or more trans-

verse field dimensions extending to infinity. The heli-

cally corrugated waveguide is a closed-boundary struc-

ture and because of its skew boundary conditions, it is

necessary to analyze the problem by using both trans-

verse magnetic modes and transverse electric modes in

complete sets. For a specific form of excitation, the nor-

mal modes and mode coefficients of a Iossless helically

corrugated circular waveguide are determined from the

appropriate boundary conditions. These bcjundary con-

ditions lead to 1) a characteristic dispersion equation

yielding the propagation constants of the normal modes

and 2) equations yielding the mode coefficients that can

be interpreted as the amount of conversion into varj -

ous modes.

To investigate the transmission and mode conversion

properties of a wave propagating through a transition

from a smooth circular guide to a helically corrugated

circular guide in a rigorous manner, we should expand

the normal modes of the helically corrugated guide in

terms of those of the smooth guide and vice vew,a. In

such an expansion, an infinite set of linear equations in
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an infinite number of unknowns will be involved. Ap- Because of the periodic nature of the helical corruga-

proximations are used to obtain the mode conversion tion, application of Floquet’s theorem shows that the

in such cases. z-dependence of the fields must be of the form

Because of the nature of the characteristic dispersion g–fflm. = ~–JPOzg–i(@T/P) ) ~. (3)
equation obtained, care must be exercised in the evalua-

)

tion of the equation and in the interpretation of the i.e.,

w-~ diagram. By varying the parameters such as the

pitch P, slot depth 8, and slot width w, we conclude that Pm=i?o+m; ) (4)

the theoretical results and our physical intuition are

compatible. The theoretical calculations and the experi- \vhere m is any positive or negative integer.

mental results obtained on available helically corrugated The complete fields inside the radius a, with the time

circular waveguides are also in agreement. dependence e~W’ suppressed, can be expressed as

m,. ?n, n

(5)

The helically corrugated waveguide has a small pitch

p, radius a, small pitch angle 8 = tan-’ @/2ra, shallow

slot depth 6 = b — a, and narrow slot width w as shown in

Fig. 1 (a), with its guide axis as the axis of the cylindrical

coordinates (p, +, z). The developed helical corrugation

as viewed from inside when cut by a plane of constant+

and unrolled is shown in Fig. 1 (b). An additional set of

unit vectors 211and 21, parallel and perpendicular, re-

spectively, to the pitch angle O is introduced in Fig. 1 (b)

and the vector relation 3L = 4P X 211holds. Let the super-

scripts i and s refer to the inside region P 5 a and slot

region a <p <b, respectively. We have the following

boundary conditions:

at p=a,

E,i tan 0 + Ed; = E,l’ = O,

E,i cos 0 – E+; sin O = El,
1

(1)

H,i sin O + H4i cos 9 = Hlls; j

atp=b,

E,,s = El’ = 0. (2)

and

where u and h are, respectively, the angular frequency

and free-space wavelength. Equations (5) can be simpli-

fied [16] by noting the fact that if the helical corrugation

is moved a distance less than p and then rotated in d

through a certain angle, it again coincides with itself.

This constraint can be ensured only if we make n = – m

and put AnnZ =Bmni=O for n# —m. Thus (5) is reduced

to a single summation index in tiz.

In an attempt to make the present analysis applicable

to frequencies far away from cutoffs of the multimode

waveguide, an exact field distribution in terms of both

propagating and evanescent modes across the opening

of the helical slot is necessary. Such a field distribution

is derived in the Appendix.
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To express the field distribution across the slot open-

ing in terms of space harmonic components, \ve ~vrite

Since

cos Ofi.i(a) = EL S((Z),

Cos Oz,,.,ya) = Em’’(a),

we have

~ c*’ {[H,(’)(kb)Hg(’)’(ka)–Hg(’’(kb)Hg(’)’(ka)][1 – 2
q=o

:5 c,’ {[H,(’)(M)HQ(’)(k(z) - Hq(l)(kb)Hg(~)’(l,a)]
J@,a q=o

‘[1-2z(32y0@–2[IIr(’)(kb)Hqf’l(ka) – 17Q(11(kb)HQ(2)(ka)]

k K,(knb)I~(kna) – TQ(k,Lb)KJ(kr,a)

[()
x 5 — ‘————— —Jo(mr)

,,=, k. K,(k,Lb)I,(kna) – I,(knb)Kg(kna) 11

== x {– ~ cos OYn’(fma)Ami
m

+[s’’’~+’o;%l~(’a)~’}’} ’13)

Solutions of (1 1)–(13) furnish the sought-after char-

acteristic dispersion equation:

>(:)’-W]
11

where E~’(a) is obtained by putting p = a and z = O in

(24) in the Appendix, i.e., the field at the center of the

opening of the slot. Accordingly, (9) becomes

{
X Cqs[Hg(’)(kb)H,(’)(ka) – HQ(1)(kb)Hg(2)(ka)]

[
x 1 + 2 f~ J,(mr)

1)
. (lo)

,,:=1

The matching of the boundary conditions at p = a at

the center of the slot in accordance with (1) yields the

following equations:

and the coefficients:

Cos o _
~mi=~ i=_

m?n — IL’(a),
Jm(~ma)

(15)

The characteristic or determinantal equation (14)

yields, for a given excitation field configuration, the

propagation constant ~~ for all possible nclrmal modes

in the helically corrugated waveguide, whereas (15~1 and

(16) provide us with the relative contents of the normal

modes for the particular excitation field ccmfiguration.

1 The characteristic equation (14) turns out to be basically the
same as equation (33) obtained by Foulds and Mansell in their
paper “Propagation of an electromagnetic wave through a helical
waveguide, ” P70c. IEE (London), vol. 111, pp. 1789–1 798, November
1964. When equation (14) was in the programming stage, the author
noticed the publication of the paper by Foulds and Mansell using
uonorthogonal helical coordinate system to obtain their equation
(33) and emphasizing mainly on the propagation in the “deep” slot
and the rotation of the plane of polarization of waves passing through
the helical guide. The present paper uses a cylindrical coordinate sys-
tem to obtain (14) above and has its emphasis on wave propagation
and mode conversion characteristics in the helical guide and the
proper interpretation of the a-p diagram for the problem.
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Inspection of (14) shows that it reduces to the normal

mode solutions of a solid smooth circular waveguide as

it should under the following conditions:

1) when b = a, then .l,.(fna) = O and J~’ (f~a) = O

2) when w = P, then J~(f~b) = O and J~’(~~b) = O

3) when w = O, then J~,(t~a) = O and J~’ (~~a) = O.

The actual computation of the propagation constant

~~ will not be possible until the excitation field config-

uration is specified. To simplify the problem we assume

in the next section that the only slot excitation field is

in a form similar to the dominant mode TEI1 in a solid

smooth circular waveguide. Equation (14) then can be

simplified by letting q = 1 only.

CALCULATIONS, DISCUSSIONS, AND MEASUREMENTS

For a given frequency, the phase velocities and ampli-

tudes of the fundamental and space harmonics are not

independent of each other, and depend on the form of

potential field, which is controlled by the particular

structure of the periodic guide and the particular ex-

citation. The evaluation of the right side of (14) with

q = 1 @y should center around the branch m = 1 in this

case, m order to insure the continuity of fields between

the two regions, since we have chosen the TE1l mode

slot excitation with circumferential variation corres-

ponding to q = 1. In other words, the fundamental is in

the branch m = 1 of the w-~ diagram as shown in Fig. 2,

and the branch m = q is always the fundamental branch.

In fact, what is mentioned above is implicit in the mean-

ing of the mode coefficients Amm and B~~. Physically,

the implication is that the fundamental is taken to be

that space harmonic with the highest phase velocity or

the largest amplitude. Evaluation of the RHS series of

(14) with g= 1 only also confirms that for frequencies

not too high the term with m = 1 is always the fast-

wave term with the highest phase velocity and the

largest amplitude, whereas terms with m # 1 are all

slow-wave space harmonic terms with relatively very

small amplitude compared with that of m = 1 term.

The sum of all the slow-wave terms converges quite

rapidly to zero. For slow waves, the argument of a

Bessel function becomes imaginary and the relations

are: J~(j.&@) = Jnl~(&@) and J~’(j&@) = –j .jrnI~’

(~~~). Inspection of Fig. 2 reveals that for the particular

combination of a, 6, P, and w studied here, the u+? curve

of the helically corrugated circular guide virtually

coincides with that of the corresponding mode of the

solid circular guide; i.e., the propagation is virtually un-

disturbed by the presence of the shallow and narrow

helical corrugation (the effect of deep corrugation will

be discussed later) of appropriate pitch on the wall of

a solid circular waveguide. A~ = (3 — ~. in Fig. 2 shows

that the difference between the phase constant of a

smooth guide ~, and the phase constant of a corrugated

guide P is very small and positive, indicating that the

helically corrugated guide is less capacitive than the

smooth guide. Measurements on such helically corru-

gated guides also confirm the above fact. It is logical to

conjecture that the presence of the slow waves in the

guide must have created such a field across the openings

of the slots that the helically corrugated guide appears

as a solid smooth guide to the fast wave-i. e., the field

across the openings of the slots apparently appears van-

ishing.

To prove the validity of the statements in the pre-

ceding paragraph, we let a) q = O only (for TM 01), and

b) g = 2 only (for TEIJ in (14) and we see from Figs. 3

and 4 that a) m = O, and b) m = 2 are, respectively, the

fundamental branch of the u-~ curves. These curves

are again virtually identical with those of the corres-

ponding modes of smooth circular waveguide since

AD’s are very small.

Apparently (14) with q = 1 only can also be used for

such a form of slot excitation as the TEli or TMl~

(i=l, 2, 3, . . , ) mode in a solid smooth circular wave-

guide for cases where multimode propagation are pos-

sible and accordingly solutions for ~ in these cases

should be multivalued. This fact is verified by evalua-

tion of ~ from (4), (6), and (14) [q= 1 only] for multi-

mode cases (i.e., at higher frequencies) as shown in the

co-~ diagrams of Fig. 5(a) and (b).

The periodic nature of the @ diagram is obvious

from Figs. 2-4. The phase velocities of the various

harmonics are different in magnitudes and signs. At

cutoff frequencies, for every space harmonic with posi-

tive phase velocity, there is one with an equal and

opposite phase velocity. Equations (15) and (16) show

that the amplitudes of these pairs are also equal and

therefore, at cutoff frequency, the guide can support

only standing waves. The group velocities of all the

space harmonics are seen to be equal for any single fre-

quency and to have the same direction as that of the

energy. Those space harmonics whose phase velocities

are always opposite in direction to the respective group

velocities are termed reverse or backward waves. In

particular, it is possible to have periodic structures in

~,hich the fundamental itself is a backward ~vavea

Since the helically corrugated waveguide is a closed-

boundary structure, its C@ diagram does not have any

“forbidden region” as evidenced in Figs. 2–4. Outside

the triangles VP= I C, the propagation is of slow-wave

type, and the groove appears as inductive loading.

Within the triangles the propagation is of fast-wave

type and the groove appears as capacitive loading. The

nature of slow-wave propagation becomes more and

more evident as the depth or width of the corrugation

increases as shown in Figs. 7 and 8 to be discussed

later.

In Figs. 2–4, as the frequency increases, the value of

(I@) will go through a multiple of r. The computation
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shows that when the frequencies at which (,6)) ap-

proaches a multiple of r are reached, the f ast-w’ave space

harmonics begin to appear in addition to the fast-wave

fundamental. At and around these frequencies the

computation also shows that the amplitude of the

fundamental drops and that of the space harmonic in-

creases, typifying the description of a space harmonic

“resonance” in the pitch length P. The typical sharp

discontinuity in the propagation constant in the “con-

ventional sense of resonance” does not occur here, as

evidenced by the effect of varying the pitch $ in Fig. 6

to be discussed later.

Before investigating mode conversions and observing

the effect of varying parameters, w, p, and 8 = b –a, we

shall briefly mention the way the propagation con-

stants (3~ of the normal modes of the helically corru-

gated circular waveguide are computed from (4), (6),

and (14). The computation ~vas carried out on IBM

7094 computer by assuming a reasonable fim =~q on a

cut-and-try basis in order to establish the identity of

(14). Obviously, the propagation constant of the cor-

responding mode in solid smooth guide can serve as the

best clue in choosing the initial trial value of Pm= @g.

Subsequent trials of ~~ will be such that the values of

the right-hand side of (14) converge to the constant

value of the left-hand side for a particular frequency and

particular mode of excitation. An “educated” guess of

both the upper and lower limit of the sought-after & is

often complicated by the multiplicity of the roots of

(14). Accordingly, programming the equation to yield

the sought-after propagation constant is, itself, a tre-

mendous task.

The effect of varying the pitch of the helically cor-

rugated guide with a narrow and shallow corrugation is

shown in Fig. 6 and will be discussed first. We have

mentioned earlier that for a fixed pitch P, the value of

(@P) \vill go through a multiple of r as the frequency

increases, as seen in Figs. 2–4. Figure 6 shows that as

the pitch is increased, the fast-wave space harmonics

will appear at lower frequencies as they should. Every

time a fast-uave space harmonic is added, the @P is

increased in its value by a n-. The A~ shown in Fig. 6 is

for the fundamental “TEII” (“ “ denotes the normal

modes of the helically corrugated circular waveguide)

fast wave only; i.e., m = 1, but the number label on each

broken curve show-s the fast-wave harmonics present.

For example, the label with numbers 1, 0, and – 1 indi-

cates, respectively, that the fundamental, second har-

monic, and third harmonic fast waves are present. At

and around the frequencies for which (~p) goes through

a multiple of r, the amplitude of the fundamental drops

and that of the space harmonic rises, typifying the

description of a space harmonic ‘[resonance” in the pitch

length p. It is important to note that at low frequencies,

increasing the pitch p has the effect of reducing the A@

(therefore reducing mode conversion also) \vithout in-

troducing the “resonance” effect of the second harmonic

fast wave. Accordingly, for a particular frequency range

of interest, there is always an ‘~optimum” choice of the

longest pitch length P in order to reduce the mode con-

version [see Fig. 9(c) ] level without ‘i side effect. ”

The effect on the propagation constant by varying

the slot width w of the helically corrugated guide with

shallow slot depth and appropriate pitch is shown in

Fig. 7. Increasing the slot width w increases the A@ and

therefore enhances the mode conversion [see Fig. 9(a) ].

As the width is widened to a certain limit (e.g.,

w = 0.10 inch), the fundamental ‘(TEu” fast-wave will

make the transition, at a certain frequency (at about

15.5 Gc/s for w = 0.10 inch), from the fast wave to the

“TM 11” slow-wave fundamental and harmonics (in this

case numbering from — 3 to 5, i.e., forward and back-

ward second through fifth space harmonics). The fact

that the wave makes the transition from a fast one to

a slow one indicates that the helically corrugated wall

appears to change, for a certain fixed frequency, from

capacitive to inductive for increasing slot width. When

the width is equal to the pitch, all the slow waves

vanish and the fast-wave fundamental alone propa-

gates in the smooth guide of radius b. This is why in

Fig. 7 the slo~v-wave portion of the curve for 6 = 0.20

inch is located above that for 6 = 0.15 inch or 0.10 inch.

Increasing the slot depth 8 obviously will make the

helically corrugated wall look, for a fixed frequency,

less and less capacitive and eventually inductive for

~ < $AO. Figure 8 shows that for 6 = 0.10 inch, the wall be-

comes inductive at about 15.5 Gc/s and the funda-

mental “TE1l” fast wave makes the transition into the

“TMll” slow-wave fundamental and harmonics (in this

case numbering from — 2 to 4, i.e., forward and back-

ward second through fourth harmonics). Increasing the

slot depth also increases the A(3 and therefore enhances

the mode conversion [see Fig. 9(b) ], If the depth

of the corrugation goes through a multiple of quarter

wavelength, the helically corrugated guide would be-

have like filters having stop bands and pass bands. For

slot depth of 0.30 inch, for example, the slo~v-wave stop

band starts arollnd 9.5 Gc/s as seen in Fig. 8. In general,

the propagation characteristics for guides with “deep”

corrugation are drasticall}- different from those with

very shallow corrugation. For guides with “deep” cor-

rugation, the waves will also propagate in the slot in

the helical direction and the polarization plane of the

waves propagating in the center space will be rotated,

as discussed by Foulds and Mansell [13]. All these

effects are the results of apparent significant increase of

power flo~v intc, the helical corrugation.

We shall now turn our attention to the evaluation of

the mode coeflcients of (15) and (16). Assuming the

dimensions shown in Fig. 2 and a slot excitation field

with circumferential variation of the TE1l mode in

smooth guide (i. e., g = 1), we can obtain numerical



T966 TANG: HELICALLY CORRUGATED MULTIMODE CIRCULAR WAVEGUII)E 281

LV=P-B~

o 0.01 002 003 0,04 0,05 006

f UGATED GUIDE

30

26
p3=o.50”

/

26 ,53”’ “ .~
P

24
/

22

20

18

16

14

12

/
,,

/,* - —
/ P5

10

8

6
ID LINE-AL?

HEO LINE-P

4

2 ~

Pq- ‘

0 1 I
01234567 89101112

P

Fig, 6. Propagation characteri.ticsfm various pitchp.

AP =&!3~

o 0.02 004 0.06 0.08 0.10

f

30

28
s:

26

24

‘.025”
22 1.046°

1.07 “

20
#

[8 ,/ ‘ & I

16 /

14
c) \&’ .

12 /

10

8

6 .ID LINE-A/3

;HED LINE-/3

4

2

0 I 1

01234567 89101112

Fig. 7’. Propagatioll characteristics forv:~rious slot widthw.

A~=/3-@s

f

30

28

26
c>

24 .<

22

20

18

[6

14

12

[0

8

6

4

2

0
01234567 891011 12 x)

o P

Fig. 8. Propagation characteristics forvarious slotdepth 3.

~-40
m PARAMETERs

<.30 _ a=l,406°
8=0,050”

z

g -20
P=0,254°

cc
w
~_, o -

g

o I 1 I - - -$ ,
0 004” 008” 012” 016” 020” WIDTH W

(a)

~ -40
PARAMETERS

\

\

! I 1 , +:

1
.

g .30 _
a=l 406”

z
P,02541,

w= O.046°

$
‘%c

0
0

0

0 0 1’( 0.2” 03” 04” 0.5” DEPTH 8

(b)

-40
n
.
<-30 -

z
Q_*o

2
w~-lo - / ‘y a=l.406°

\4 ‘v 8=0050”
0
0

w= O046°
o [

o 0,.2” 0,4” 0 6“ 0,8 I .0” PITCH II

(c)

Fig. 9. (a) “TMII” mode conversion in a helicallv corrugated cir-
Cular guide. (b) “Th’lll’’m odeconversloni nahejicallyc orrugated
circular guide. (c) “TiVIU” mode conversion in a helically corru-
gated circular guide.



282 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES JUNE

values of the mode content from (15) and (16), We inter-

pret the coefficient Blli as the amount of “TEII” (quota-

tion marks denote the normal modes of the helically

corrugated guide) mode fast-wave (or slow-wave) funda-

mental present in the helically corrugated guide and the

coefficient A Ili as the amount of ‘{TM II” mode fast-wave

(or slow-wave) fundamental. All other coefficients

Awn{ and Bmm~ for [m I >1 represent the amounts of

fast-wave (or slow-wave) space harmonics. For the

TEli or TMli mode excitation, m = 1 means funda-

mental, m = O, — 1, or — 2 means, respectively, forward

second, third, or fourth space harmonics, and m =2, 3,

or 4 means, respectively, backward second, third, or

fourth space harmonics. For TEzi or TMzi mode excita-

tion, m = 2 means fundamental and m = 1, 0, or – 1

means, respectively, forward second, third, or fourth

space harmonics. For purposes of comparison, we are

interested in only the relative magnitudes of the mode

coefficients and, accordingly, all the mode coefficients

will be normalized to the largest mode coefficient. The

normalized mode coefficient thus represents the relative

content of the mode with respect to the strongest mode.

For the TEu mode excitation and the parameters shown

in Fig. 2, Table I shows that the “TM1l” mode is the

only important one in addition to the dominant “TE1l”

mode. All other coefficients A ~~i and BnLn~ for m # 1 are

all at least a few orders of magnitudes smaller than A iii.

For the TMII mode excitation and parameters shown

in Fig. 2, Table II shows that the “TEll” mode is the

only important one in addition to the ‘~TM1l° mode.

Comparison of Tables I and II shows that “TMll” is

the “preferred” mode of the helically corrugated

circular waveguide, because of its axial electric field

component.

Both Tables I and II show that the mode “conversion”

increases with increasing frequency. Figure 9 shows, for

the TEII mode excitation at 6, 11, and 14 Gc/s, the

mode “conversion’) by varying the parameters 8, p, and

w, one at a time. It is seen that increasing either the

width or the depth of the slot enhances the “TM 11”

mode “conversion, ” whereas increasing the pitch re-

reduces the “TMll” mode “conversion” as discussed

earlier.

We are now in a position to study the transmission

and mode conversion properties of waves at a transition

from a smooth guide to a helically corrugated guide of

semi-infinite length. To be rigorous, we have to express

a typical normal mode of the smooth guide in terms of

the normal modes of the helically corrugated guide. To

do that exactly, we have to solve an infinite set of linear

equations in an infinite number of unknowns. The prob-

lem can be simplified considerably if we may neglect the

reflected waves at the transition for cases where the

slot depth 8 = b —a is small. In such cases, mode conver-

sion should be small and the amount of mode conversion

can be represented directly by (15) and (16) or Tables I

and II and Fig. 9 as an approximation.

When a smooth waveguide, a length of helically cor-

rugated waveguide, and a smooth waveguide are con-

nected in tandem, the amount of converted mode at the

output smooth guide is approximately the vector sum

of the mode conversion voltages at the input transition

(TEII to “TMII”) and at the output transition (“TEll”

to TMJ. For example, we have from Tables I and II

at 6 Gc/s the upper and lower bounds, respectively, at

– 28 dB and – 31 dB level, depending upon the length

of the corrugated circular waveguide section. We have

obtained experimentally these two bounds by Klinger’s

cavity resonance method [14]. The test was performed

by using a helically corrugated circular waveguide of

four feet in length. The “educated” curve sketched from

the measurement points shows that the upper bound is

close to — 28 dB level and the lower bound is about at

– 35 dB level (see Fig. 10). The agreement between the

theoretical results and the experimental results is within

the measurement accuracy of the method used.

TABLE I

MODE LEVELS FOR TEu EXCITATION

f 6 GC/S II Gc/s 14 Gc/s

“TE1l” Power: (BU’/BI,’)2 O dB O dB O dB

“TMxL” Power: (AHa/Bllt)’ e/M –29 dB –17 dB –12 dB

TABLE II

MODE LEVELS FOR TMu EXCITATION

f 6 GC/S 11 Gc/s 14 Gc/s

“TMu” Power: (A U’/AHL)2 O dB O dB O dB

‘[TEu” Power: @111/Au1)2 p/e –45 dB –30 dB –25 dB
.-

PARAMETERS: o = 1.406; 8=0.050V P= O.254:W=O046°
LENGTH OF THE HELICALLY CORRUGATE GUIOE = 4 FT
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Fig. 10. “TMIl” mode conversion due to a section
of helically corrugated circular waveguide.

CONCLUSION

For specific forms of excitations, the normal modes

and mode coefficients of a Iossless helically corrugated
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circular waveguide are determined from the appropriate at p = a shown in (18). To find the evanescent. modes, we

boundary conditions. Because of the multiplicity of the expand (18) into a Fourier series:

root of the characteristic dispersion equation obtained,

care must be exercised in the evalua~tion of the tran- EI(p=a) = 5a, Cos k.z, (19)

scendental equation and to the interpretation of the ,,=0

C@ diagram. where

By varying the parameters such as the pitch P, slot 2T
depth 6, and slot width w, we find that our physical ,4, =12-, (20)

intuition and the theoretical results are compatible.
w

Measurements on a section of helically corrugated cir-

cular waveguide also show that the experimental data

and the theoretical results are in agreement. For the

TEII mode excitation, it is shown that increasing either

the width or the depth of the corrugation enhances the

TIVIll mode conversion, whereas increasing the pitch

reduces the TNIII mode conversion. Mode conversion

always increases with increasing frequency.

A~PmD1x

FIELD DISTRIBUTION AT A HELICAL SLOT OPENING

For field excitations with arbitrary circumferential

variations at the opening of a slot, the electric field in-

side the helical slot of width w <~lo in general has the

following form of E-type modes (similar to those in

radial transmission lines) in a Iocalwise sense:

ao=G?J for the propagating modes. (,21)
2

an = GrJo(mr) , for the evanescent modes.
n+ o

(22)

Here, we assume for simplicity that the propagation n of

E.L” is in the z-direction for small pitch angle 6, Equating

(17) to (21) we get, at p=a and z=@/27r,

G = e-~flo(~~l’”) : ~ Cq’[RQL’l(kb)H,c’J(ka)
z- rf=o

– H,(l) (~6)H,f2J(,ba)]. (23)

The complete electric field expansion in the slot there-

fore is

EL’ = ~ C,’[H,(’) (kb)Hq(’)(kp) –
q=o

Hg(1)(kb)HQ(2)(kp)]e–j(Pq’–v+)‘1
I

#J_y<z<P@+~>

27r 2 2T 2 ~“
(17)

=0
~or~+&<p+ @P_:

2T 2 2T2” I

Since E~S must be constant in magnitude and phase

inside (he slot of width w cos 6( <~~o), we use the phase {
x cq’[H,(’)(kb)Hq( ’)(kp) – z7*(’)(kb)iY*@) (kp)J

at the center of the slot, i.e., letting z =p/2m in (17).

The field across the opening of the slot is apparently

constant according to (1 7), by putting p = a. On the

other hand, because of the fringing at the corners of the

slot, the actual field EL’ across the opening becomes in-

finitely large at the corners in a quasi-static manner as

[11]

d (P=a) =
2Z 2 1/2 ;

[’ - [-)1
(18)

w

I.e., it approaches infinity according to D–l~~, where D

is the distance from the corner, in a fi~shion similar to

infinitely sharp edges in diffraction problelms [12].

Obviously, the field near the opening of the slot cannot

be represented completely by (17) by merely letting

p = a, since there are many evanescent higher order

E-type modes with z-variations present at the opening

of the slot in order to satisfy the boundary conditions

[

m K,(k’nb)Ig(Knp) – I,(krLb)K,(knp)
x 1+2X

.=l Kg(krtb)I,(k,La) – Iv(knb)KQ(kna)

‘J0@m)c0s(n2T31}

~or&+@<z

2X 2

=0

where

27r 2

()
knz=k,’–ks= w-—— –k’, n # ‘o (25)

w

and
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The magnetic field in the slot is

jtie dELns
HIIs=~H1/nS=~ –___

n=o n=o kn2 dp –

ice ,

MICROWAVE THEORY

1 dE_LO”

-[
—+

jq.1 C7p
5

n= 1

AND TECHNIQUES

-(Y%I -

IIq(1J(kb)HQ(2) ’(kp)]

[ () 2 &(knb)~q(knfJ) – Ig(kJ)Kq(knp)
x 1+25–; —

.=1 Kq(knb)l.(k~a) – l~(k,tb)K,(~.a)

+ [Hg(2J(rtb)Hgf’)(kj) – Hg(’j(Hr)Hg(2’( kp)]

‘[2H3knKq(knb)I: (knP) – ~g(knb)~; (knp)

Kq(knb)I,(kna) – IQ(knb)KQ(kna)
Jo(1LT)cos(n2~ :)]}. (27)
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